Parallel surrogate-assisted global optimization with expensive functions – a survey
نویسندگان
چکیده
منابع مشابه
Parallel Bayesian Global Optimization of Expensive Functions
We consider parallel global optimization of derivative-free expensive-to-evaluate functions, and proposes an efficient method based on stochastic approximation for implementing a conceptual Bayesian optimization algorithm proposed by [10]. To accomplish this, we use infinitessimal perturbation analysis (IPA) to construct a stochastic gradient estimator and show that this estimator is unbiased.
متن کاملSOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sort...
متن کاملExpected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges
Sequential sampling strategies based on Gaussian processes are now widely used for the optimization of problems involving costly simulations. But Gaussian processes can also generate parallel optimization strategies. We focus here on a new, parameter free, parallel expected improvement criterion for asynchronous optimization. An estimation of the criterion, which mixes Monte Carlo sampling and ...
متن کاملParallel radial basis function methods for the global optimization of expensive functions
We introduce a master–worker framework for parallel global optimization of computationally expensive functions using response surface models. In particular, we parallelize two radial basis function (RBF) methods for global optimization, namely, the RBF method by Gutmann [Gutmann, H.M., 2001a. A radial basis function method for global optimization. Journal of Global Optimization 19(3), 201–227] ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural and Multidisciplinary Optimization
سال: 2016
ISSN: 1615-147X,1615-1488
DOI: 10.1007/s00158-016-1432-3